TITLE

Introduction

Inlinein Action - Simple examplesin C
O Hello, world
O Just Another _ Hacker
O Do The Math

What about XS and SWIG?

One-Liners

Supported Platformsfor C
O Unix Support
O Options for Windows Users
O Unsupported Options

The Inline Syntax

O uselnline...

O The DATA section

O Thebi nd() function

O Theinit () function

O Configuration Options

O Shortcuts
Fine Dining - A Tour of the C Cookbook
External Libraries
List Context - Using the Perl Stack
Simple Perl Internals
It Takes All Types
use Inline with => Event;
Calling back to Perl from C
Object Oriented Inline
CGl with Inline.
Inline Works.
Digest::MD5
Parse::RecDescent
XS
ExtUtils::MakeMaker
Directory Assistance
Gang of Four
Dynaloader
Built for Speed
More Information
Some Ware Beyond the C

O Inline::CPP

O Inline::Python

O Thelnline API
See Perl Run. Run Perl, Run!
The Future of Inline
Conclusion
FOOTNOTES
About the Author

H

OOOOOOOOO%OOOOOOOO

TITLE

Pathologically Polluting Perl with C, Python and Other Rubbish using Inline.pm

| ntroduction

No programming language is Perfect. Perl comes very close. P! €! r! 1?:-(Not quite *‘ Perfect’’.
Sometimesiit just makes sense to use another language for part of your work. Y ou might have a stable,
pre-existing code base to take advantage of. Perhaps maximum performance is the issue. Maybe you just
““*know how to doit’’ that way. Or very likely, it’s a project requirement forced upon you by
management. Whatever the reason, wouldn't it be great to use Perl most of the time, but be able to
invoke something el se when you had to?

I nl'i ne. pmisanew module that glues other programming languages to Perl. It allows you to write C,
C++, and Python code directly inside your Perl scripts and modules. Thisis conceptually similar to the
way you can write inline assembly language in C programs. Thus the name: | nl i ne. pm

The basic philosophy behind Inlineisthis: ‘**make it as easy as possible to use Perl with other
programming languages, while ensuring that the user’ s experience retains the DWIMity of Perl”’. (1) To
accomplish this, Inline must do away with nuisances such as interface definition languages (2),
makefiles, build directories and compiling. You simply write your code and run it. Just like Perl.

Inline will silently take care of all the messy implementation details and “*do the right thing'”. It
analyzes your code, compilesit if necessary, creates the correct Perl bindings, loads everything up, and
runs the whole schmear. The net effect of thisisyou can now write functions, subroutines, classes, and
methods in another language and call them asif they were Perl.

Inlinein Action - Simple examplesin C

Inline addresses an old problem in a completely revolutionary way. Just describing Inline doesn’t really
doit justice. It should be seen to be fully appreciated. Here are afew examplesto give you afeel for the
module.

Hello, world

It seems that the first thing any programmer wants to do when he learns a new programming technique
isto useit to greet the Earth. In keeping with that tradition, here isthe “*Hello, world’* program using
Inline.

use Inline C => << END C;
void greet() {
printf("Hello, world\n");

}END_C
greet;

Simply run this script from the command line and it will print (you guessed it):
Hello, world

In thisexample, I nl i ne. pmisinstantiated with the name of a programming language, **C’’, and a string
containing a piece of that language’ s source code. The source code string is represented using the
here-document quoting style, for clarity. This C code defines afunction called gr eet () which gets
bound to the Perl subroutine &nzi n: : gr eet . Therefore, when we call the gr eet () subroutine, the
program prints our message on the screen.

Y ou may be wondering why there are no #i ncl ude statements for thingslike st di o. h? That’ s because
Inline::C automatically appends the following lines to the top of your code:

#i ncl ude " EXTERN. h"
#i ncl ude "perl.h"
#i ncl ude " XSUB. h"
#i ncl ude "1 NLI NE. h"

These header filesinclude all of the standard system header files, so you almost never need to use
#i ncl ude unless you are dealing with a non-standard library. Thisisin keeping with Inline’s philosophy
of making easy things easy. (I borrowed that one :-)

Just Another Hacker

The next logical questionis, ‘*How do | pass data back and forth between Perl and C? In this example
we'll pass a string to a C function and have it pass back a brand new Per| scalar.

use Inline C
print JAXH(' Perl’);

__END__
_C _
SV* JAXH(char* x) {
return newSVpvf ("Just Another % Hacker\n", X);
}

When you run this program, it prints:
Just Anot her Perl Hacker

Y ou'’ ve probably noticed that this example is coded differently then the last one. Theuse I nline
statement specifies the language being used, but not the source code. Thisis an indicator for Inline to
look for the source at the end of the program. (More about this later.)

The concept being demonstrated is that we can pass Perl datain and out of a C function. Using the
default Perl type conversions, Inline can easily convert all of the basic Perl datatypesto C and
vice-versa.

This example uses a couple of the more advanced concepts of Inlining. Its return valueis of the type sv*
(or Scalar Value). The Scalar Value isthe most common Perl internal type. Also, the Perl internal
function newsvpf v() iscalled to create anew Scalar Vaue from astring, using the familiar spri nt f ()
syntax. These topics will be addressed again later. (See It Takes All Types and Simple Perl Internals
below.)

Do The Math

The previous examples only had one C function each. Let’slook at a program that has several functions
and see how they interact.

print "9 +5 =", add(9, 5), "\n";
print "SQRT(9%"2 + 572) =", pyth(9, 5), "\n";
print "9 * 5 =" mlt(9, 5), "\n";

use Inline C => << END C;

int add(int x, int y) {
return x +vy;

}

static int mult(int x, int y) {
return x * vy;

}
doubl e pyth(int x, int y) {
return sqrt(add(mult(x, x), mult(y, y)));

}
END_C
This produces:

9 +5 =14
SQRT(972 + 572) = 10.295630140987
Can't locate auto/main/mult.al in @NC ...

Thisis definitely the hard way to do simple math, but it reveals some important concepts about Inline C.
Thefirst isthat Inline functions like add() can be called either from Perl or C. Secondly, standard C
functionslikesqgrt () can be called without any fuss, because they are already included in Perl. Finally,
if you declare afunctionto best at i c, it won't be visible from Perl. Thus the error message.

What about XS and SWIG?

Let’s detour momentarily to ponder **Why Inline?’

There are already two major facilities for extending Perl with C. They are XS and SWIG. Both are
similar in their capabilities, at least as far as Perl is concerned. And both of them are quite difficult to

learn compared to Inline. Since SWIG isn’t used in practice to nearly the degree that XSis, I'll only
address XS.

Thereisabig fat learning curve involved with setting up and using the XS environment. Y ou need to get
quite intimate with the following docs:

perl xs

per | xst ut

perl ap

perl guts

perl cal

per | mod

h2xs

xsubpp

Ext Uil s:: MakeMaker

* % kX X %k X X F

With Inline you can be up and running in minutes. There is a C Cookbook with lots of short but
complete programs that you can extend to your real-life problems. No need to learn about the
complicated build process going on in the background. Y ou don’t even need to compile the code
yourself. Perl programmers cannot be bothered with silly things like compiling. ** Tweak, Run, Tweak,
Run’’ isour way of life. Inline takes care of every last detail except writing the C code.

Another advantage of Inlineisthat you can useit directly in ascript. Aswe' |l soon see, you can even
useit in aPerl one-liner. With XS and SWIG, you always set up an entirely separate module. Even if
you only have one or two functions. Inline makes easy things easy, and hard things possible. Just like
Perl.

One of Inline’ s major goalsisto provide a reasonable replacement for XS. This should soon be the case
for all but the most esoteric cases.

Finally, Inline supports several programming languages (not just C and C++). As of thiswriting, Inline
has support for C, C++, Python, and CPR. There are plans to add many more.

One-Liners

Perl isfamous for its one-liners. A Perl one-liner is generally a (reasonably) short piece of Perl code that
can be typed at the command line, and can successfully accomplish atask that would take much longer
in another language. It is one of the popular techniques that Perl hackers use to flex their programming
muscles. Here are a couple of the more famous ones:

perl -le "while(($_||=1)++){print if(1x$)!'~/~(11+)\1+$/}’
Prints all of the prime numbers. (3)
perl -e 'require DynalLoader; DynaLoader::dl install _ xsub("main::hangnme", unpack("

Will use the ** FOOF Pentium bug’’ to crash your computer. (4)

Thereisaspecia flavor of Perl one-liners that often show up as the signatures of conp. | ang. per| . *
usenet postings. This brand of one-liner isknown as a JAPH. The goal of aJAPH isto print ** Just
Another Perl Hacker\n’’, using some obscure, insidious, morally impure programming technique. Case
in point (3):

perl -e 'BEG N{ny$x="Knuth heals rare project\n"; $"H i nteger}=sub{ny$y=shift;$ =

So the only question that remainsisthis: *‘Is Inline powerful enough to produce a JAPH one-liner that is
also bonifide C extension?’ Of courseitis! (Why elsewould | be going to al this trouble?) Here you

go:
perl -e 'use Inline C=>q{void J(){printf("Just Another Perl Hacker\n");}};J

Try doing that with XS. We can even write the more complex Inline JAxH() discussed earlier asa
one-liner:

perl -le "use Inline C=>g{SV*JAXxH(char*x){return newSVpvf ("Just Another % Hacke

If you participate on the Inline mailing list (inline@perl.org) you'll find that this JAPH isindeed my
persona email signature. | thought this was pretty cool until Bernhard Muenzer posted this gem to
conp. | ang. perl . nodul es:

#!/usr/bin/perl -- -* Nie wi eder Nachtschicht! *- -- Irep\nib\rsu\!#
use Inline C=>"void C(){int mu,e=0;float I, ,I;for(;1840-¢; putchar((++e>907
&&942>e?61-mu) ["\ n)noc. i sc@ ezneunb(rezneuM drahnreB"]))for (u=_=I=0; 79-(m

=eB0) &&! *| +_* _<6&R26- ++u; _=2*| *_+e/80*.09-1,1 =)=l *1-_* _-2+n727.;}";&C

Supported Platformsfor C

Inline C works on all of the Perl platformsthat | have tested it with so far. Thisincludes all common
Unixes and recent versions of Microsoft Windows. The only catch is that you must have the same
compiler and make utility that was used to build your per| binary.

Unix Support

Inline has been successfully used on Linux, Solaris, AIX, HPUX, and all the recent BSDs (Free, Open,
and Net).

Optionsfor Windows Users

There are two common ways to use Inline on MS Windows. The first one is with ActiveState’s
ActivePerl for MSWin32 (5). In order to use Inline in that environment, you’ll need a copy of MS
Visual C++ 6.0. Thiscomeswith thecl . exe compiler and the nmake make utility. Actually these are the
only parts you need. The visual components aren’t necessary for Inline.

The other alternative isto use the Cygwin utilities. (6) Thisis an actual Unix porting layer for Windows.

It includes all of the most common Unix utilities, such asbash, | ess, make, gcc and of course per| .

Unsupported Options

If you are stuck on a planet where you just can’t get access to the right compiler, you can at least try to
use an aternate one. The Inline C configuration allows you to specify your own overrides for the
compiler, linker, and make utility, with the cC, LD and MAKE options. Using these, you may be able to get
some alternate configurations to work, but please don’t complain (to me at least :-) if it doesn’t.

Thelnline Syntax

Inlineisalittle bit different than most of the Perl modules that you are used to. It doesn’t import any
functions into your namespace and it doesn’t have any object oriented methods. Its entire interface is
specified through’ use Inline ...’ commands.

This section will explain al of the different waystouse 1 nli ne.

uselnline...

You may have several ' use Inline ...’ statementsinasingle sourcefile. Any configuration
properties specified in one statement will be propagated to subsequent statements, if it makes sense.

Hereisalist of the most common usages. Each example is followed by a short explanation.
use Inline;

Does nothing except load the Inline module.
use Inline C => "source code";

Compiles, binds and loads a module written in C. In this example the source codeis passed in as a
string.

use Inline C => "source code",
LIBS => '-1foo’,
PREFI X => '"foo_’;
Same as before. Configuration options are specified as (key => value) pairs.

use Inline C => DATA => config-pair-1|ist;

Automatically search for the C source code in Perl’ s special DATA filehandle. Y ou can optionally specify
configuration options.

use Inline C

Thisisshorthand for * use Inline C => DATA;’ with no configuration arguments.

use Inline C=> 1] list of source code lines];

Alternatively you can pass in the source code as an anonymous array of lines.
use Inline C =>"/path/source.c’;

Y ou can also put the source code in a separate file and specify the file's name.

use Inline Config =>
DI RECTORY => '/nypath/.Inline’;

This does not compile any code. It just sets general configuration options that will apply to subsequent
use | nline commands.

use Inline C => Config =>
LIBS => '-1fo0’;

If you want to specify config options for a specific language without compiling any code, use this syntax
form.

use Inline with => Event;
You can tell Inline to get hints from other Perl modules like Event . pm
use Inline gw FORCE NoC ean i nf o)

Y ou can specify alist of shortcut options to apply. See section on ‘* Shortcuts'’ below.

The DATA section

Inline has a special feature designed to make your code easier to read and maintain. Normally you pass
code to Inline as astring. But you can also tell Inline to search the contents of the DATA filehandle for
source code. Consider this snippet:

use Inline Lisp => 'DATA ;
Perl stuff ...
__END
__Lisp__
Li sp stuff

The __END__ statement in Perl marks the end of the actual Perl code. (__DATA _ does the same thing for
modules.) Everything after that marker is made into a pseudo-file that you can read using the <DATA>
filehandle.

Inline takes advantage of this feature. By using the word 'DATA’ for your source code string, you are
telling Inline to read the DATA filehandle. Inline will scan through the text, looking for its own special
marker, __Foo__, where‘‘Foo’’ isthe programming language you are trying to compile.

The observant hacker will see adight problem here. Perl handles use statements at compile time, but
the DATA filehandle is not available until the entire program has been compiled. How could it be?
<rhetorical> When you use the DATA syntax, Inline queues up the request for delayed processing.

Luckily Perl has another handy construct, the | NI T block. Thisisvery similar to aBEG N or END block.
Perl invokesan | NI T block in that magical moment between compilation and run time. TheInlineI NI T
block then compiles any objects that were queued.

Objects? Yes, you can put more than one source filein the DATA area. The only rule to remember is
that *‘order counts’’. Y ou must have the use calls and the code blocks in the same order. Likethis:

use Inline C

use Inline ' C++';
use Inline Python’;

Perl treasures ...

__END

_C _

/* C garbage */
C++_

/ C++ trash

__Python__

""" Python pollution """

~

Aswas stated above:
use I nline Foo;
issimply shorthand for:
use Inline Foo => ' DATA';

Thisisfinefor scripts, but module authors often reserve the DATA section for POD and Autol oader
subroutines. Don’t worry. Be happy. Inline will only processthe DATA betweenits__Foo__ type
markers and POD commands like =pod. That way you can mix all three together.

There is one more advantage to using the DATA form of Inline as opposed to the string form. Y ou don’t
need to worry about escaping special characters. A backslash is abackslash is a backslash.

Thebi nd() function

| lied. Inline actually does have one function (or class method). It isthe bi nd() function. It alows you
to compile/bind/load an extension at run time. Remember, Perl’s use command is a compile time
directive. But imagine that you want to write a program that generates C code on the fly. (And compile
and run it aswell). Y ou would not have the source code available until run time. With bi nd() you can
do this:

use | BM : Mai nf rane;

use Inline;

ny $source_code = COBOL_generator("ebcdictate");

I nl'i ne->bi nd(COBCOL => $source_code);

| BM : Mai nfrane: : crunch(ebcdi ctate("Just Another Perl Hacker")
or die "Does not compute";

bi nd() takes most of the same parametersthat ' use Inline ...’ does, but sinceit’'samethod call,
you need to put them in parentheses.

Theinit () function

| lied again. Inline actually has two public functions. (Now you know why | call it ** Pathologically
Polluting Perl’’) Thereisaso ani ni t () function to handle a somewhat esoteric case.

Imagine for amoment that you wanted to write the following code:

eval "use Inline Java";
__END__

__Java___

/* Java junk */

Thereis abig problem here. Remember that this syntax tells Inline to look for the Java source code in
the DATA area, and this actually getsdonein Inline’s1 NI T block. But since we're evaling the call, it's
already too lateto runthel NI T.

Thisiswherei ni t () comesto the rescue. It calsInline’s| NI T routine manually, thus compiling any
Inline objects that have been queued for processing. Here is the correct code:

eval "use Inline Java";
Inline->nit;

__END

__Java__

/* Your Java code */

Configuration Options

We have aready seen some examples of passing configuration information to Inline. Thisis
accomplished viaalist of 'key’ =>"value' pairsthat follow the source code parameter. Hereis an
example:

use Inline C =>"'DATA,
DI RECTORY => '/ nypath/nmydir’,
INC => "-1/inc/path’;

Thistells Inline to use a specific directory to do its dirty work, and to use a non-standard path to find
header files. Some config parameters can have multiple values. It that’ s the case, you alwayslist themin
an anonymous array. Most parameters are also additively inherited from previous Inline calls. Another
example will help make sense of that statement:

use Inline Config =>
DI RECTORY => '/ nypath/ nydir’;
use Inline C => Config =>
INC => ['-Il/inc/pathl, ’-1/inc/path2'];
use Inline C =>"'DATA,
INC => " -1/inc/path3;
use Inline C =>"'DATA,
DI RECTORY => '/nypath/otherdir’,
INC => [undef, "-I1/inc/path3’, '-1/inc/path2'];

Thefirst call setsthe build/install directory for future callsto use. Itisa‘‘configuration only’’ call; no
code is compiled. The second call specifies C-specific options and isalso ‘‘ configuration only’’. The

third call compiles some C code, adding athird include path to the original two. The last call compiles
some more C code. It overrides the previous DIRECTORY option. It also usesundef to clear the current
list of include paths, then re-adds paths 3 and 2 in that order.

Most of the configuration parametersfor I nl i ne Care simply proxies for identical parametersin the
underlying XS and MakeMaker processing. If you are already familiar with these options, that’s great. If
not, no worries. You can learn them as you go. | won't list all of them here, but sufficeit to say, ‘‘Inline
isvery configurable’’.

Shortcuts

Say that you want to recompile your Inline C function even though its up to date. Maybe you want to
peek at what Inline generated to make it al work. If your programiscalled f oo. pl , then try running it
likethis:

perl -M nline=FORCE, NOCLEAN, | NFO f oo. pl

Thiswill forcearecompile, leave the build areaintact, and print some information telling you where to
find it. I NFO, FORCE and NOCLEAN are known as Inline shortcuts. They are configuration options that
you can use from the command line. If you need to use them alot you can also put them directly in your
program like this:

use I nline gw(FORCE NOCLEAN I NFO);
If you ever find a bug with Inline, you can report it by saying:
perl -M nline=REPORTBUG f 00. pl

and following the instructions.

Fine Dining - A Tour of the C Cookbook

In the spirit of the O’ Reilly book ‘* Perl Cookbook’’, Inline provides a manpage called C-Cookbook. In
it you will find the recipes you need to help satisfy your Inline cravings. In this section I’ll review some
of the tastier morsels. Bon Appetit!

External Libraries

The most common real world need for Inline is probably using it to access existing compiled C code
from Perl. Thisis easy to do. The secret isto write awrapper function for each function you want to
expose in Perl space. The wrapper calls the real function. It also handles how the arguments get passed
in and out. Here is a short Windows example that displays a text box with a message, a caption and an
““OK’’ button:

use Inline C => DATA =>
LIBS => '-luser32’,

PREFI X => "ny_’;
MessageBoxA(’ I nl i ne Message Box’, 'Just Another Perl Hacker’);

__END__

#i ncl ude <wi ndows. h>

i nt my_MessageBoxA(char* Caption, char* Text) {
return MessageBoxA(O, Text, Caption, 0);

}

This program calls afunction from the MSWin32 user 32. dI | library. The wrapper determines the type
and order of arguments to be passed from Perl. Even though the real MessageBoxA() needs four
arguments, we can expose it to Perl with only two, and we can change the order. In order to avoid
namespace conflictsin C, the wrapper must have a different name. But by using the PREFI X option
(same as the XS PREFI X option) we can bind it to the original name in Perl.

List Context - Using the Per| Stack

C functions can only return one value. Perl can return alist of values. How can we write a C function
that returns alist of values? The answer liesin understanding how Perl really callsits subroutines. It
uses an internal stack of Scalar Values or Sv*. (Remember those from the second example?) This stack
is known to the Perl experts as ‘‘the Stack’’. When Perl calls a subroutine, it puts all of your arguments
on the Stack. Y ou normally access these through the special array variable, @ . When the subroutine
returns, Perl replaces the input parameters with the return values.

To do thisfrom C, you need to manipulate the Stack yourself. Luckily for you, Inline provides a bunch
of macrosto do this easily. Here is an example that works similarly to Perl’s 1 ocal ti me() function:

print map {"$ \n"} get localtine(tinme);

use Inline C => <<’ END_OF C_CODE ;

#i ncl ude <tine. h>

void get localtine(int utc) {
struct tm*ltinme = localtinme(&utc);
Inline_Stack Vars;
Inline_Stack Reset;

I nl'ine_Stack_Push(newSVi v(Itime->tmyear));
Inline_Stack _Push(newSVi v(ltine->tmnon));
Inline_Stack Push(newSViv(ltine->tm nday));

I nl'ine_Stack_Push(newSVi v(Itime->tm hour));

I nline_Stack_Push(newSViv(ltinme->tmnin));
Inline_Stack _Push(newSViv(ltine->tmsec));
Inline_Stack Push(newsSViv(ltine->tm.isdst));

I nl'i ne_Stack_Done;
}
END_OF_C_CODE
Simple Perl Internals
Without knowing it you have just been introduced to Perl internals. Perl hasarich API that you can call

from your C code. All of the specifics are detailed in the per | api manpage. (7) Through the API you
can access al of the internals of Perl aswell as create new data structures. Here we present a C function

that will read afile by name, parse it into words, and return a new hash of arrays containing that data. (It
isthe Inline version of an example from the Camel book.) The file contents look like this:

flintstones fred barney
j et sons george jane elroy
si npsons honer narge bart

Here isthe program:

use Inline C

use Dat a: : Dunper;

$hash_ref = load data("./cartoon.txt");
print Dunper $hash_ref;

__END
_C _
static int next_word(char**, char*);

SV* | oad_data(char* file_nanme) ({
char buffer[100], word[100], * pos;
AV* array;
Hv* hash = newHV();
FILE* fh = fopen(file_nane, "r");
while (fgets(pos = buffer, sizeof(buffer), fh)) {
i f (next_word(&pos, word))
hv_store(hash, word, strlen(word),
newRV_noi nc((SV*)array = newAv()), 0);
whi | e (next _word(&pos, word))
av_push(array, newSVpvf("9%", word));
}

}
fcl ose(fh);
return newRV_noi nc((SV*) hash);

static int next_word(char** text_ptr, char* word) {
char* text = *text _ptr;

while(*text '="\0" &&
*text <= ")
t ext ++;
if (*text <=' ")
return O;
while(*text '="\0" &&
*text > ') {
*wor d++ = *text ++;
*word = '\0’";
*text_ptr = text;
return 1;

}

Theinternal calls like newHv() and newRV_noi nc() may seem abit strange, but once you read the doc,
they aren’t so bad. Running this program produces:

$VARL = {
"flintstones’ => |
"fred,

" bar ney’

1.

"honer’,

"'mar ge’

"bart’
1.

"jetsons’ => |

"sinmpsons’ => |

' geor ge’
"jane’,
“el roy’
]
1

It Takes All Types

Before version 0.30, Inline only supported five C datatypes. These were: i nt, | ong, doubl e, char * and
sv+. Thiswas al you needed. All the basic Perl scalar types are represented by these. Fancier things like
references could be handled by using the generic sv+ (scalar value) type, and then doing the mapping
code yourself, inside the C function.

The process of converting between Perl’s sv+ and C typesis called typemapping. In XS, you normally
do thisby using t ypemap files. A default t ypemap file existsin every Perl installation in afile called
lusr/libl/perl5/5.6.1/ExtUils/typemap or something similar. Thisfile contains conversion code
for over 20 different C types, including all of the Inline defaults.

Asof version 0.30, Inline no longer has any built in types. It gets al of its types exclusively from
t ypenap files. Sinceit uses Perl’ s default t ypenap file for its own defaults, it actually has many more
types available automatically.

This setup provides alot of flexibility. Y ou can specify your ownt ypenap files through the use of the
TYPEMAPS configuration option. This not only allows you to override the defaults with your own
conversion code, but it also means that you can add new types to Inline aswell. The major advantage to
extending the Inline syntax this way is that there are already many typemaps available for various APIs.
And if you've done your own XS coding in the past, you can use your existing t ypemap filesasis. No
changes are required.

Let’slook at asmall example of writing your own typemaps. For some reason, the C typef | oat isnot
represented in the default Perl t ypemap file. | supposeit’s because Perl’ s floating point numbers are
aways stored as type doubl e, which is higher precision than f | oat . But if we wanted it anyway, writing
atypemap fileto support f | oat istrivial.

Here is what the file would look like:

fl oat T _FLOAT

I NPUT
T_FLOAT
$var = (fl oat) SvNV($ar g)

QUTPUT
T_FLOAT
sv_setnv($arg, (double)$var);

Without going into details, this file provides two snippets of code. One for converting asv* to afloat,
and one for the opposite. Now we can write the following script:

use Inline C => DATA =>
TYPEMAPS => ' . /typenap’

print 1.2 + 3.4 =", fadd(1.2, 3.4), "\n";

__END__
_C _

| oat fadd(float x, float y) {
return x + vy;
}

use Inlinewith => Event;

Event . pmisamodule that allows you to define callback subroutines for certain events that can happen
in Perl. It also has a C interface for defining the callbacks as C functions. When Inline was first
introduced to the CPAN, Jochen Stenzel quickly figured out that Event and Inline could easily be used
together to define C callbacks for Event. A simple program looked like this:

use Event;
use Inline;
use Confi g;

Inline::Config::mkefile(INC => "-1%Config{installsitearch}/Event");
Inline->nport(C =>join(’'', <DATA>));

Event - >ti mer (desc

i nt erval
cb
)

> 'Perl tinmer’',
> 0.5,
> \ & _cal | back,

BOOT() ;
Event: : | oop;

__END
#i ncl ude "Event APl . h"

void c_call back(SV * sv) {
pe_event * event = CGEvent APl ->sv_2event(sv);
pe tiner * watcher = event->up
printf("Here is the C call back (of watcher \"%\").\n\tl detected % events.\n
SvPVX(wat cher - >base. desc),
event->hits,
event - >pri o,
wat cher - >base. pri o

);

void BOOT() {I_EVENT _API("Inline Script");}

Although thisis much simpler than doing something similar in XS, it left much to be desired. For
instance, the C part requires including the Event API header file. Since thisisin anon-standard place,
Inline needed to be informed of the correct include path. Also, the callback gets passed a pointer to a
pe_event structure which needs to be mapped explicitly from a SV*. Finally, Event requires a bootstrap
function to be called explicitly.

As of version 0.30, Inline supports awi t h syntax which informs Inline that another Perl moduleis
Inline-enabled. That means the other module can pass hints to Inline that are hidden from the user,
making the code very readable. As of version 0.80, Event . pmcomes with Inline support. This alows us
to write the previous example like this:

use Inline with => Event;
use Inline C

Event - >ti mer (desc = "Perl timer’,
interval => 0.5,

cb => \ & _cal | back

Event:: | oop;

__END__

C
voi d c_cal | back(pe_event * event) {
pe_tiner * watcher = event->up;
printf("Here is the C call back (of watcher \"%\").\n\tl detected % events.\n
SvPVX(wat cher - >base. desc),
event->hits,
event - >pri o,
wat cher - >base. prio
)
}

To implement this change, Joshua N. Pritikin needed to add only a dozen lines of code to his Event
module. Thisis agreat example of how module authors can easily expose a C interface to their users
through Inline.

Calling back to Perl from C

When you use Inline to jump from the warm fuzzy pleasure palace of Perl, to the cold dark wasteland of
C, you may find yourself longing for home. Don’t worry my friend, you are not alone. Perl, Hersdlf, is
watching over you. Literally.

Since your C code is running under Perl, you can easily call back to Perl. The easiest way to do thisis
with theeval () command, knownin C aseval _pv() . Hereisasimple example:

use Inline C
goto_C();

END__

C
void goto C() {
printf("l’ve been banished to C, but at least | have Perl %\n",
SvPVX(eval _pv("use Config; $Config{version}", 0)));

}

Sinceeval () always returnsthe value of the last expression, using eval _pv() isprobably the easiest
way to execute an arbitrary Perl expression and get ascalar in return. In this example, we useeval () to
load Confi g. pm SO we can return the Perl version number. Then we use SvPVX() to convert the scalar
toachar* sothat we can print it with printf ().

It isalso possible to call back to your own Perl subroutine using functionslikecal | _pv() . Hereis
another short example:

use Inline C

goto_C();
sub how_ is_perl _doing {
print "This is Perl. 1'"mdoing finel\n";
}
__END__
C

void goto_C() {
printf("Cis boring. I wonder how ny friend Perl is doing?\n");
cal | _pv("how_is_perl _doing", GVAD));

Actually calling Perl subroutines can get pretty tricky, especially when you start passing arguments back
and forth. That’s because you need to deal with all of the Perl Stack issues manually. For a good primer
on this subject, consult the per | cal I manpage.

Object Oriented Inline

Consider the following program:

ny $obj1 = Sol dier->new(’'Benjamn’, 'Private’, 11111);
ny $obj 2 = Sol di er->new(’ Sanders’, 'Col onel’, 22222);
ny $obj 3 = Sol dier->new(’' Matt’, 'Sergeant’, 33333);

for my $obj ($objl, $obj2, $obj3)

print ($obj->get _serial, ") ",
$obj ->get _nane, " is a ",

$obj - >get _rank, "\n");

package Sol di er
use Inline C => << END ;
t ypedef struct {
char* nane;
char* rank;
long serial
} Sol dier;

SV* new(char* class, char* nane, char* rank, long serial) {

Sol di er* sol di er mal | oc(si zeof (Sol dier));
S\V* obj ref newsVi v(0) ;
SV* obj = newSVrv(obj _ref, class);

sol di er->nane = strdup(nane);
sol di er->rank = strdup(rank);
sol dier->serial = serial;

sv_setiv(obj, (IV)soldier);
SVREADONLY_on(obj);
return obj _ref;

char* get_nane(SV* obj) {
return ((Sol dier*)SvlV(SvRV(obj)))->naneg;

char* get _rank(Sv* obj) {
return ((Sol dier*)SvlV(SvRV(obj)))->rank

I ong get _serial (SV* obj) {
return ((Sol dier*)SvlV(SvRV(obj)))->serial
}

voi d DESTROY(SV* obj) {
Sol dier* soldier = (Soldier*)SvlV(SYRV(obj));
free(sol di er->nane);
free(sol di er->rank);
free(soldier);

}
END

Damian Conway has given us myriad ways of implementing OOP in Perl. Thisis one he might not have
thought of .

The interesting thing about this example is that it uses Perl for all the OO bindings while using C for the
attributes and methods.

If you examine the Perl code everything looks exactly like aregular OO example. Thereisanew()
method and several accessor methods. The familiar "arrow syntax’ is used to invoke them.

In the class definition (second part) the Perl package statement is used to name the object class or
namespace. But that’ s where the similarities end and Inline takes over.

Theideaisthat we call aC subroutine called new() which returns ablessed scalar. The scalar contains a
readonly integer which is a C pointer to a Soldier struct. Thisis our object.

Thenew() function needsto mal | oc() the memory for the struct and then copy theinitial valuesinto it
using st r dup() . Thisalso alocates more memory (which we have to keep track of).

The accessor methods are pretty straightforward. They return the current value of their attribute.

The last method DESTROY() is called automatically by Perl whenever an object goes out of scope. Thisis
where we can free all the memory used by the object.

That'sit. It'savery simplistic example. It doesn’t show off any advanced OO features, but it is pretty
cool to see how easy the implementation can be. The important Perl call isnewsSvr v() which creates a
blessed scalar.

CGlI with Inline.

The problem with running Inline code from a CGlI script isthat Inline writesto a build area on your disk
whenever it compiles code. Most CGI scripts don't (and shouldn’t) be able to create a directory and
writeinto it. Here'sasimple CGlI that solves the problem:

#1 [/ usr/ bi n/ per|
use CE gw :standard);
use Inline Config =>
DI RECTORY => '/usr/ | ocal / apache/ |l nline’
print (header,
start_htm (" Inline CA Exanple’),
h1(JAXH(' I nline’)),
end_htm
);

use Inline C => <<END
Sv* JAxH(char* x) {
return newSVpvf ("Just Another % Hacker", x);

}
END

The solution isto explicitly tell Inline which directory to use withthe’ use I nline Config =>
DI RECTORY => ...’ line. Then you need to give write access to that directory from the web server
(CGI script).

If you see this as a security hole, then there is another option. Give write access to yourself, but
read-only access to the CGI script. Then run the script once by hand (from the command line). This will
cause Inline to precompile the C code. That way the CGI will only need read access to the directory (to
load the shared library). Just remember that whenever you change the C code, you need to precompile it

again.

How InlineWorks.

Inlineisasimple module. That isto say, it doesn’t do anything very difficult. It just weaves together the
efforts of alot of other programs that do very difficult things. But that’ s the point. Why reinvent the
wheel ? Or the engine? Or the Christmas tree air freshener that hangs on the rear-view mirror? Inline just
puts all these essentials together into alean, mean programming machine.

To describe how Inline works, let’ stake alook at its parts.

Digest::M D5

Thereisone crucia trick that makes Inline.pm work. It takes an MD5 digest (or fingerprint) of your
Inline source code and usesit to determine whether or not that code needs to be compiled. An MD5
fingerprint isavirtually unique 128-bit pattern that can be generated for any arbitrary piece of text.
Sinceit isastronomically unlikely that two texts will have the same fingerprint, it is an excellent way to
determine whether or not your compiled code is up to date. (8)

Every time you run your program, Inline calculates the fingerprint and compares it with that of a
specified object file. If the fingerprint matches, Inline will immediately load that object and start using
it. If it doesn’t match, Inline will trigger a new compile of your source code.

The net effect is that Inline compiles your code the first time that you run a script. If you change the Perl
part of the script, Inline doesn’t need to recompile. If you change the Inlined source, then a compile will
be triggered.

Par se:: RecDescent

| came up with the inspiration for writing Inline, at Damian Conway’ s presentation on
Parse::RecDescent during the TPC4 conference in Monterey CA last summer. Fittingly, it isthe module
that Inline usesto parse C and C++. Hereisalook at Inline's C grammar:

c_code: part(s) {1}

part: comment
| function_definition

ny $function = $itenf1]->[0];

push @ $t hi sparser->{data}->{functions}}, $function
- lines deleted --

| anything_ el se

comment: nm{\s* // [M\n]* \n }x
| m{\s* [* (2:[~A*]+*(20/))* *[([\t]*)? }x

function_definition:
- lines deleted --

anything _else: /.*/

Some of the grammar has been removed for brevity, but the basic ideais that Inline considers the C code
to consist of 3 distinct sub-elements: *comments’, *function definitions’, and "anything else’. The first
and last ones are thrown away. Inline only cares about the function definitions.

XS

Even though the long term goal of Inlineisto offer areasonable replacement for XS, Inline uses XSto
implement all of the bindings between Perl and C. There is nothing wrong with XSitself. Only with the
burden it puts on its users. It s hard to learn and not very Perl-like to implement.

For each bindable function definition that Parse::RecDescent finds, Inline creates an XS wrapper to call
that function.

Inline provides several configuration options for C and C++ that correlate directly to XS options. See the
I nli ne: : Cand per| xs manpages for more info.

ExtUtils :MakeM aker

MakeMaker is truly the hardest working module in Perl-biz. Without it Inline might not be possible, and
definitely would not be so robust and cross-platform. MakeMaker is the thing that turns a Makefile.PL
into a Makefile. It has dozens of options and takes along timeto learn, let alone master.

Many of the C configuration options are proxies for MakeMaker options with the same name. This
allows you to use these powerful features without having to write your own Makefile.PL.

Directory Assistance

| hope that you' re wondering, *“Where does Inline do al this stuff?’. Good question! Inlinerelies on
having a specia directory where it can build and install new extensions on the fly. There are several
places that Inline will search for adirectory called . I nli ne/ . If it can’t find one, it will attempt to create
anew directory called _I nl i ne in some well known places. You can also tell Inline which directory to
use with the DI RECTORY config option, or the PERL_I NLI NE_DI RECTORY environment variable. The
directory structure looks like this:

.I'nlinel
bui | d/
Foo/
Foo. xs
Makefil e. PL
config
errors/
libl/
aut o/
Foo/
Foo. so
Foo.inline

build/
Thisisthe area used to write the source files needed to build an extension. If a compilation error
occurs the build subdirectory is left intact so you can debug the problem. Otherwise, it is deleted.

config
Thisisavery important file which contains top-level information about your Inline installation. It
will be automatically generated thefirst timeyou usea. I nl i ne/ directory.

errors
Asaconvenience, all of the files from the most recently failed build are copied to theer r or s/
directory.

lib/
Thisdirectory is exactly like alocal Perl installation directory. All of your compiled extension
objects are installed here, so they can be found and |oaded by Perl.

Foo.s0
Thisisyour object file.

Foo.inline
Thisisthefile that contains metadata about your object. Thisiswhere the MD5 fingerprint is
stored.

Gang of Four

Once Inline has taken the time to do al this nice work for you, it can finally sit down for a coffee break.
All it needs to do to build and install your extension code is to invoke the same processes you would do
if youwroteit al yourself. Namely:

perl Makefile.PL
make

make test

make install

Well, we don't actually do the make t est for obvious reasons, but everything elseisreal.

The only difference is that the object files don’t end up in Perl’ s site directories. Normally that takes root
permission. Inlineinstall’ s the objectsin your local . I nl'i ne/ I'i b/ directory. Inline then adds that path
to @INC, so Perl can find your new extensions.

Dynal oader

The final step that Inline performs is to use Dynaloader to load the compiled object and bind its public
functions to Perl. Thankfully, Dynal_oader performs this very platform specific task, in a cross-platform
manner.

Built for Speed

Inlineis optimized for fast performance. When you run an Inline program that has already compiled its
source code, Inline performs the minimal amount of overhead needed to get your program fully
operational and running. The only thing it needs to do that an XS program would not, isto calculate the
MDO5 fingerprint of your source code, and make sure that it matches the compiled version. Thankfully,
the MD5 program itself iswritten in C, and istherefore very fast. Extra modules like Parse::RecDescent
(whichis quite slow to load), never come into the picture.

On the other hand, when the fingerprint does not match, the Inline modul e takes a vacation. He checks
over the itinerary you’ ve prepared, phones up his module buddies, sets up camp for building your
extension, does his dirty work, and callsin the maid clean up the remains. All on your expense account.
The premiseis: ** Since we only need to compile once, we might as well take thetimeto do it right’’.

More I nformation

This section was a peripheral look at how Inline works. For more specific details, read the Inline
documentation, which is distributed with Inline on CPAN. Or take a peek at the source code. (It’sjust
Perl :-)

Some Ware Beyond the C

The primary goal of Inlineisto make it easy to use other programming languages with Perl. Thisis not
limited to C. Theinitial implementations of Inline only supported C, and the language support was built
directly into I nl i ne. pm Since then things have changed considerably. Inline now supports multiple
languages of both compiled and interpreted nature. And it keeps the implementations in an object
oriented type structure, whereby each language has its own separate module, but they can inherit
behavior from the base Inline module.

In this section we'll take a quick peek at the other Inline language modules, and take alook at the API
that defines how new languages should be implemented.

Inline::CPP

On my second day working at ActiveState, a young man approached me. ‘‘Hi, my nameis Neil Watkiss.
| just hacked your Inline module to work with C++."”

Neil, | soon found out, was a computer science student at alocal university. He was working part-time
for ActiveState then, and had somehow stumbled across Inline. | was thrilled! | had wanted to pursue
new languages, but didn’t know how I’d find the time. Now | was sitting 15 feet away from my answer!

Over the next couple months, Neil and | spent our spare time turning Inline into a generic environment
for gluing new languages to Perl. | ripped all the C specific code out of Inline and put it into Inline:C.
Neil started putting together Inline::CPP and Inline::Python. Together we came up with a new syntax
that allowed multiple languages and easier configuration.

Hereis an example of an Inline C++ program:

ny $obj 1 Sol di er->new(’ Benjamin’, 'Private’, 11111);
ny $obj 2 Sol di er->new(’ Sanders’, 'Colonel’, 22222);
ny $obj 3 = Sol dier->new’ Matt’, ’'Sergeant’, 33333);
for my $obj ($objl, $obj2, $obj3)
print ($obj->get_serial, ") ",
$obj ->get_nane, " is a "
$obj - >get _rank, "\n");

use Inline 'C++';

__END__
_ G+

class Soldier {

public:
Sol di er (char *nanme, char *rank, int serial);
char *get_nane();
char *get _rank();
int get_serial();

private:
char *nane;
char *rank;
int serial;

Sol di er:: Sol di er(char *nane, char *rank, int serial) {
t hi s- >nane = nane;
thi s->rank = rank;
this->serial = serial;

char *Sol dier::get_name() {
return nane;
}

char *Sol dier::get_rank() {
return rank;
}

int Soldier::get_serial() {
return serial;
}

This exampleisidentical to the one we saw for using object oriented Inline C. But in C++ it'samuch
cleaner solution.

Inline::Python

Python is a completely different kind of animal. Since Python is an interpreted language, it can’t work
with Inline in the traditional manner. Python gets compiled into a bytecode much like Perl, and is then
executed by the Python runtime. But Inline searches for a shared object with an associated MD5
fingerprint. So this caused a problem for Inline. The solution was, therefore, to change the tradition.

Theinitial ideathat Neil and | had was to have two Inline modes; compiled mode and inter preted
mode. Thiswas not hard to do, but what would happen if down the road we wanted to bind to something
that was neither compiled nor interpreted? This modal solution did not sit well with me.

After alittle brainstorming, we discovered a solution that is much cleaner. Since each moduleisa
subclass of Inline, we simply abstracted the concepts of ’ executable objects’, *building’, and 'loading’.
Each language implementation provides its own methods for handling all of the steps that Inline
performs.

For Inline::Python the concept of an executable has been overridden to mean a. pydat file. A . pydat
file contains data about a Python program. Kind of like a shared object contains data about a C program,

in an abstract sense. If Inline detects that a program’s Python section is not in sync with its. pydat file
(viathe MD5 fingerprint) Inline will build a new one.

To build anew . pydat fileInlineinvokes Inline::Python’sbui | d() method. That is also exactly what
Inline doesfor C to build anew . so or . di | file. Whereas Inline::C uses Parse::RecDescent to parse the
C code, Python uses a completely different parser. Python actually uses pyt hon to precompile Python.
Then it storestheresult in the . pydat file. This makes subsequent runs load much faster. Again, just
like C.

Finally, Inline calls Inline::Python’s| oad() routine. For C, thiswould be a call to Dynaloader, which
would dynamically load the module and bind the appropriate C functions to Perl. For Python, | oad()
has to fire up a python interpreter and then bind al the functionsin the. pydat fileto Perl subroutines.
Then when the Perl program calls one of these, it magically calls the Python code.

Here is a sample program that makes uses of Inline Python:

use I nline Python;
ny $l anguage = shift;
print $l anguage,
(mat ch($l anguage, "Perl’) ? ' rules’ : ' sucks’),
"1\ n";
__END
__Python__
i mport sys
i mport re
def match(str, regex):
f = re.conpil e(regex);
if f.match(str): return 1
return O

This program uses a Python regex to show that ‘* Perl rules!’’.

Since Python supports its own versions of Perl scalars, arrays, and hashes, Inline::Python can flip-flop
between them easily and logically. If you pass a hash reference to python, it will turn it into adictionary,
and vice-versa. Neil even has mechanisms for calling back to Perl from Python code. See the
Inline::Python docs for more info.

Thelnline API

| refer to an Inline module that supports a given programming language as an | L SM (Inline Language
Support Module). In order to write your own ILSM you need to know the Inline API. It isvery ssmple
actually. (The hard part isin implementing it :-)

For starters your ILSM must have aname beginning with’ 1 nli ne: :* . Likel nl i ne: : Foo for instance.
Inline keeps aregistry of al of the ILSMsthat are installed on asystem, inthe user’s. I nl i ne/
directory. This happens automatically the first time that Inline uses that directory. That way Inline
doesn’t need to poll the ILSM every time Inlineis used. If it did, it would need to load the ILSM, and
that’ s expensive.

The next requirement for your ILSM isfor it to be a subclass of Inline by putting I nl i ne into the @ SA
array. If you want to load the Inline module as well, you should do it with:

require 'Inline’

The statement’ use I nline;’ will not work. Note that it is probably not necessary for youto’ require
I nline’ becausel nline. pmisthe module that isloading your ILSM in thefirst place. Remember, it is
invalid for a programmer to say:

use Inline::Foo <<’ END FQOO ;

They needtosay ' use Inline Foo => <<’ END_FOO ; instead.

The last requirement for your ILSM isto support the APl which consists of these five methods:

register()
This method receives no arguments. It returns areference to a hash of ILSM meta-data. | nl i ne
callsthis routine only when it is trying to detect new ILSMs that have been installed on a given
system. Here is an example of the hash ref you might return for Foo++:

{
| anguage => ' Foo’,
aliases => [’ Foo++' , 'F++'],
type => 'conpiled ,

suffix => 'foodat’,

b

val i dat e()
This routine gets passed all configuration options that were not already handled by the base
I nl i ne module. The options are passed as key/value pairs. It is up to you to validate each option
and storeitsvalueinthel nl i ne object (which isalso passed in). If a particular option isinvalid,
you should croak with an appropriate error message.

bui | d()
This method is responsible for doing the parsing and compilation of the source code. No
arguments are passed in except for the I nl i ne: : Foo object reference. But the object contains all
the pertinent information you need to perform abuild. bui | d() isrequired to create afile of a
specific name. For C, thisfile would be the shared object.

Thisisthe meat of your ILSM. Since it will most likely be quite complicated, it is probably best
that you study an existing ILSM like 1 nl i ne: : C.

| oad()
Thel oad() iscalled every time Inline wants to run a Foo extension. The job of this method isto
load the Foo’ s runtime environment, and to bind all the appropriate Foo functionality to Perl
subroutines. For C and other compiled languages, Inline provides an inherited method that invokes
Dynal oader. For interpreted languages (or if you just want more control) you need to provide your
own | oad() method.

i nfo()
This method is called when the user makes use of the | NFO shortcut. Y ou should return a string
containing a small report about the Inlined code.

Inline comes with a manpage called I nl i ne- API that explains writing ILSMs in much more detail.

See Per|l Run. Run Perl, Run!

Inlineis agreat way to write C extensions for Perl. But is there an equally simple way to embed a Perl
interpreter in a C program? | pondered this question myself one day. Writing Inline functionality for C
would not be my cup of tea.

The normal way to embed Perl into C involves jumping through alot of hoops to bootstrap a perl
interpreter. Too messy for one-liners. And you need to compile the C. Not very Inlinish. | had all but
given up, when it suddenly struck me. What if the whole C program was just an Inline extension!

In other words, what if you could pass your C program to a perl program that could passit to Inline. Of
course, Inline would have to bind to the mai n() function, and then just call it. | could then write my own
little** C interpreter’’ in Perl. And the easiest way to use an interpreter in Unix iswith the#! syntax. If
all thiswas possible, | could write this program:

#!/usr/bin/cpr
i nt mai n(voi d)
printf("Hello, world\n");

and just run it from the command line. Interpreted C!

From thisinspiration, and a bit of perspiration, a new programming language was born. CPR. ** C Perl
Run’’. The Perl module that givesit lifeiscaled I nl i ne: : CPR. The difference between this and the
other ILSMsisthat you never ' use Inline => CPR ' .Whenyou install the moduleit installs two
gpecial components into your Perl bin directory: ' cpr’ and’ cpr. pl ’ . Together, these form the CPR
interpreter.

Of course, CPR is not redlly its own language, in the strict sense. But you can think of it that way. CPR
isjust like C except that you can call out to the Perl5 API at any time, without any extra code. In fact,
CPR redefines this API with its own CPR wrapper API. For instance, instead of using the eval _pv()
function, you can use the similar CPR_eval () call. Hereisafamiliar example:

#!/usr/ 1 ocal / bi n/ cpr
int main(void) {
printf("Hello World, |I'’mrunning under Perl version %\n",
CPR_eval ("use Config; $Config{version}")

return O;

}

There are several ways to think of CPR: “*anew language’’, ‘*an easy way to embed Perl in C'’, or just
‘“*acute hack’’. | lean towards the latter. CPR is probably afar stretch from meeting most peoples
embedding needs. But at the sametimeitsavery easy way to play around with, and perhaps redefine,
the Perl5 internal API. The best compliment I’ ve gotten for CPR is when my coworker Adam Turoff
said, ‘| fedl like my head has just been wrapped around abrick’’. | hope this next example makes you
feel that way too:

#!/usr/ bin/cpr
int main(void) {
CPR eval ("use Inline (C => (f
char* greet() {
return \"Hello world\";

}
")

printf("%, |’mrunning under Perl version %s\n",
CPR eval ("&greet"),
CPR_eval ("use Config; $Config{version}"));
return O;

}

Using theeval () call this CPR program calls Perl and tellsit to use Inline C to add a new function,
which the CPR program subsequently calls. | think | have a headache myself. %"\(

The Futureof Inline

Inline version 0.30 was written specifically so that it would be easy for other people in the Perl
community to contribute new language bindings for Perl. On the day of that release, | announced the
birth of the Inline mailing list, inline@perl.org. (9) Thisisintended to be the primary forum for
discussion on all Inlineissues, including the proposal of new features, and the authoring of new ILSMs.

In the year 2001, | would like to see bindings for Java, Ruby, Fortran and Bash. | don’'t plan on
authoring al of these myself. But | may kickstart some of them, and see if anyone’s interested in taking
over. If you have adesire to get involved with Inline development, please join the mailing list and speak

up.

My primary focus at the present time, is to make the base Inline module as simple, flexible, and stable as
possible. Also | want to see Inline::C become an acceptable replacement for XS; at least for most
situations. Specifically, thisinvolves:

I nter active Debugging Tools
Currently, when your Inline code doesn’t compile, Inline tells you which build directory to look in.
Then you need to go poking around to figure out what happened. Future Inline versions will have a
optional feature that will prompt you with amenu of files to display in a pager, whenever an error
ocCCcurs.

Hidingthe MD5 Keys
When Inline needs to know if an object module isin sync with the source code, it checks the MD5
fingerprint. Since the fingerprint needs to be stored somewhere relative to the file, the obvious first
choice wasto mangle it into the file name, like this:

mai n_C _nyscri pt _pl _3cad433bcac47af 48ef 1a5479734b2ef 3. so

wherenyscri pt . pl isaPerl program using Inline C in the default (mai n) namespace. While this
is convenient to implement and also to guarantee uniqueness, it has a few drawbacks. For instance,

if you have several objects from different builds which differ only by their MD5 keys, how do you
know which oneis current, and which ones are merely artifacts? Another problem is that the full
path names of these files become so long that some versions of thet ar program can’'t handle
them.

Another method isto create a pair of fileslike this:

myscript.so
nmyscript.inline

The special . i nl i ne filewill contain all the validation information for the object file. For the most
common cases, thisisthe right thing to do. Support for other cases will be handled aswell, but in a
slightly different fashion.

MakeM aker Tools
If you wanted to write a CPAN module that used Inline C, it is currently possible to do so. But the
compilation of your code will happen during the’ make test’ instead of during the’ make’ phase.
This behaviour can be corrected by providing some simple Inline commands to put in your
Makefil e. PL

Precompiled Distribution
| would like to be able to say something like:

perl -M nli ne=MAKEPPM nyscri pt. pl

and have Inline generate a distributable precompiled package that | could share with other users
running on the same platform. The package could then be installed el sewhere, using the command:

ppminstall ./nyscript.ppd

without needing any compiler. This could be great for Windows Perl users who don’t have the
requisite compiler.

Conclusion

Using XSisjust too hard. At least when you compare it to the rest of the Perl we know and love. Inline
takes advantage of the existing frameworks for combining Perl and C and packagesit al up into one
easy to swallow pill. As an added bonus, it provides a great framework for binding other programming
languages to Perl. Y ou might say, ‘‘It'sa’ Perl-fect’ solution!”’

FOOTNOTES

1. ““DWIMity’’ isthe attribute of ‘*Doing What | Mean’’.

2. SWIG and XS can be considered interface definition languages for extending Perl with C and
C++.

3. Adapted from aone-liner by Abigail. Abigail is by far the most prolific writer of one-liners and
JAPHS.

4. Adapted from aone-liner by Gisle Aas.
5. http://www.ActiveState.com
6. http://www.cygwin.com

7. Theperl api manpageis only available with Perl 5.6.0 and higher, but it applies equally well to
Perl 5.005. You can find it online at http://www.perldoc.com/per!5.6/pod/perlapi.html.

8. Thecons program is areplacement for nake that also uses MD5 instead of date/time stamps.
Interestingly, it iswritten in Perl.

9. To subscribe to the Inline mailing list, send an email message to inline-subscribe@perl.org.

About the Author

Brian Ingerson livesin Vancouver BC, Canada. He loves programming, good beer, and his wife Jen. He
currently works for ActiveState, where he has the undeniably enviable position of getting paid to help
improve Perl.

